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ABSTRACT

Octamer DNA binding transcription factors play important roles in housekeeping and specific gene regulations. Octamer DNA binding
transcription factor-1 (Oct-1), expressed ubiquitously, is a multifunctional molecule. The binding sites of Oct-1 are the promoters of H2B gene
and the genes of snRNA, U2, U6, and 7SK, yet Oct-1 has been described as constitutively expressed transcription factor regulating
the expression of housekeeping genes. Diverse tissue-specific genes regulations by Oct-1 include genes for interleukins (IL) 2, 3, 5; the
granulocyte-macrophagal colony-stimulating factor, immunoglobulins «, @, Ly9; the endocrine-associated Pit-1 gene; the genes for
gonadoliberin, prolactin, the thyroid transcription factor, and thyrotropin. The most interesting aspect of the gene regulations of Oct-1
includes both activation and inhibition of transcription. These opposite regulations of Oct-1 have been described through presence/absence of
a post-translational modification (PTM) in its different domains. We propose a mechanism of interplay of different PTMs or presence/absence
of PTMs in the different domains of Oct-1. We also suggest that the absence of phosphorylation and acetylation in G1 and S phases of the cell
cycle is associated with interplay of methylation and O-GlcNAc modification. This interplay of O-GlcNAc modification with the
phosphorylation and methylation with acetylation in POU sub-domain of Oct-1 may facilitate the formation of Oct-1-DNA complex,
consequently activating H2B gene transcription. Whereas, in G2 and M phases these sites are occupied by phosphate resulting in inhibition of
Oct-1-DNA complex formation leading to the suppression of H2B gene transcription. J. Cell. Biochem. 114: 266-274, 2013.
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O ctamer DNA binding transcription factors belong to a family
of structurally related POU (pit, oct, unc) factors containing
POU domain. The POU factors are widely found in eukaryotes. The
POU domain is a bipartite DNA binding structure consisting of a
POUspecific (POUs) domain, which is linked by a flexible linker to a
POU homeodomain (POUh) [Herr and Cleary, 1995]. This POU
domain is highly conserved among all the members of this family,
which is a target for several types of regulatory protein-protein
interactions. This is the target region required for sequence-specific

DNA binding [Stern et al., 1989; Ingraham et al., 1990]. Oct family is
comprised of different Oct factors including Oct-1, -2, -3, -4, etc.
Octamer DNA binding transcription factor-1 (Oct-1) is a DNA
binding transcription factor expressed ubiquitously in eukaryotes
including mammals [Sturm et al., 1988; Dong and Zhao, 2007]. A
consensus octamer sequence 5'-ATGCAAATNA-3' is recognized by
Oct-1 regulating the activation of promoters of diverse genes. This
consensus sequence is found in promoters and enhancers of diverse
vertebrate genes [Verrijzer and Van Der Vliet, 1993]. Though, both
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Oct-1 and Oct-2 recognize the same consensus sequence of DNA, the
Oct-1 exhibits the specificity for regulating diverse sets of vertebrate
genes [Schaffner, 1989], whereas Oct-2 is specific to bind on
promoters and enhancers of immunoglobulin genes in B-cell lineage
[Staudt et al., 1988]. The target genes of Oct-1 include promoters of
snRNA, mRNA [Tanaka et al., 1992], histone H2B [Fletcher et al.,
1987; Labella et al., 1988], interleukins (IL) [Ullman et al., 1991; Wu
et al., 1997] and immunoglobulins «, B, and Ly9 [Luo et al., 1992;
Strubin et al., 1995].

In the context of Oct-1 binding to promoters of diverse genes, the
binding of Oct-1 at one specific promoter will require a specific set
of conditions that will be different when binding to the promoter of
another gene. In most of the cases post-translational modifications
(PTMs), including phosphorylation, 0-GlcNAc modification, acety-
lation and methylation, play vital role in regulating the functions of
transcription factors and gene expression or repression. Different
PTMs can compete on same or neighboring amino acids implicated
in regulating different cellular functions. Additionally, presence of
one PTM may favor or inhibit the other PTM. A combination of
different PTMs on specific amino acids may result in diverse
regulations of proteins, hence proteins perform multi-functions.
Different amino acids predicted for bearing potential for different
PTMs showed that these amino acids are located in different regions
of Oct-1, that is, N-terminal, C-terminal, POUs domain, POUh
domain, and the linker region of POUs and POUh domain. Switching
of one PTM with the other in different transcription factors is the
phenomenon that regulates the gene transcription. Moreover,
phase-specific PTMs, in cell cycle, seem to be important in
regulating the orderly progression of the cell cycle. Phosphorylation
of Oct-1 has been documented in regulating the H2B gene
expression [Schild-Poulter et al., 2003, 2007]. Involvement of
multiple kinases and phosphatases in cell cycle-specific regulation
of Oct-1 is evidenced [Roberts et al., 1991]. Sufficient evidences
show the involvement of differential phosphorylation of POU
domain of different proteins in regulating gene transcription
[Tanaka et al., 1992; Caelles et al., 1995; Schild-Poulter et al., 2007].
Additionally, phosphorylation and dephosphorylation is a
common mechanism in regulating the functions of different
transcription factors [Boulikas, 1995]. This phosphorylation and
de-phosphorylation results in regulating the signaling pathways.
De-phosphorylation of the Ser/Thr may result in a possibility of an
addition of OGlcNAc on the —-OH function of the same Ser/Thr. Thus,
blocking the phosphorylation on those specific sites, consequently
resulting in blocking of the function regulated by phosphorylation
such as described earlier [Ahmad et al., 2006, 2007].

Similar interplay or interdependence of acetylation and methyl-
ation on adjacent Lys residues has also been described in histone H3
[Zhang et al., 2004; Millar and Grunstein, 2006; Taverna et al., 2007]
and these acetylated and methylated Lys residues have been
documented to function in gene transcription by regulating the
interdependent molecular pathways [Lee and Workman, 2007].
Additionally, another interplay of phosphorylation and methylation

on vicinal (Lys 9 and Ser 10; Lys 27 and Ser 28) amino acids has also
been evident in histone H3 [Wang et al., 2004] and named as
“Methylation/Phophorylation Switching.” This complex interplay
of different PTMs regulates diverse protein functions and multi-
functions performed by the same protein. Therefore, complex
networks of combinatorial PTMs are operative in modulating
different functions of proteins. These networks of PTMs can be
considered as a “PTMs switchboard” [Everett et al., 2009] regulating
protein multi-functionality through various functional switches of
different proteins in coordinated manner. Therefore, there is a
competition of different enzymes of PTMs to modify same or vicinal
amino acids by different modifying groups, for instance, kinases and
OGT modify the same or neighboring Ser/Thr either by a phosphate
group or by O-GlcNAc. These Yin Yang sites predicted to be
potential in different domains of Oct-1 may serve as functional
switch through differential combination of phosphorylation and O-
GlcNAc modification at different Ser/Thr in different domains.
However, a competition between OGT and different kinases to
modify the Oct-1 with a specific combination of phosphorylated and
0-GlcNAc modified Ser/Thr will depend on the cell cycle stage.
Same mechanism of PTMs switching for methylation with
acetylation and phosphorylation on adjacent amino acids makes
the situation more complex to envisage the functional switches in
Oct-1 and other proteins. Unrevealing of the novel mechanisms for
these PTMs switchboard will lead to explore new possibilities to
maneuver different biological systems and processes from gene
expression to signal transduction and cell cycle regulation.

In the current study, utilizing different prediction methods, the
modification potential for phosphorylation, O-GlcNAc modification,
acetylation, and methylation on different amino acid in mouse Oct-1,
has been predicted. Additionally, we have also tried to develop an
association among different PTMs, including inhibitory and favoring
affect of one PTM on the other. The conservation status of these
potential sites (amino acids) for different PTMs has also been estimated
in diverse vertebrate and invertebrate members to substantiate the
modification potential of different amino acid residues predicted by
different methods. A mechanism of Oct-1 involvement in H2B gene
regulation by interplay sites of different PTMs has been proposed. We
suggest that a combination of different PTMs and their interplay with
each other may activate or inhibit the Oct-1 function for H2B gene
transcription at different stages of the cell cycle.

Oct-1 binds directly to the specific DNA motif, but in some cases it
requires some co-factors that interact with the DNA binding domain.
Binding of these co-factors ultimately result in Oct-1 phosphoryla-
tion by different kinases such as protein kinase A (PKA), protein
kinase C (PKC), and casein kinase 2 [Grenfell et al., 1996; Inamoto et
al., 1997]. Phosphorylation and de-phosphorylation of proteins are
important mechanisms to alter the activities and interactions of
proteins at specific phases of cell cycle. Phosphorylation of Oct-1 by
DNA-protein kinase (DNA-PK) takes place in cell-cycle-dependent
manner and this phosphorylation is dependent on physical
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NetPhos 2.0: Predicted phosphorylation sites in Mouse
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Fig. 1.

Graph shows prediction results for phosphorylation by NetPhos 2.0. Vertical lines show phosphorylation potential on Ser (blue color), Thr (green color), and Tyr

(red color) in mouse Oct-1 protein. Threshold level is represented by horizontal gray line.

interaction of Oct-1 with Ku antigen [Roberts et al., 1991; Schild-
Poulter et al., 2003]. Netphos 2.0 [Blom et al., 1999] has predicted
68 amino acids to have potential for phosphorylation. Amongst the
potential predicted 68 sites, the POU sub-domains in mouse Oct-1
include Ser 284, 328, 336, 358, 361, 365, 367, 387, 388, and 409 and
Thr 326 and 387 potential phosphorylation sites (Fig. 1, Table I). The
conservation status also showed that most of the potential Ser and
Thr were conserved in vertebrates (Fig. 3) and invertebrates (Fig. 4).
Fifteen specific phosphorylation sites in Oct-1 catalyzed by DNA-PK
were already identified [Schild-Poulter et al., 2007]. Out of these, 13
phosphorylation sites lie within the N-terminal domain of Oct-1
protein, a glutamine-rich domain. Moreover, differential phosphor-
ylation in different activation domains of Oct-1 has been described
as a mechanism for its activation [Roberts et al., 1991]. A similar
control mechanism for Oct-2, a very similar protein to Oct-1 has
also been evident [Tanak and Herr, 1990]. It is documented that
hyperphosphorylation of Oct-1 during mitosis by p34cdc2 involve
in terminating its DNA binding ability [Roberts et al., 1991]. Tt
has been documented that phosphorylation of Oct-1 by PKA also
inhibits its DNA binding activity in a sequence-specific manner
[Segil et al., 1991]. However, PKA has an interesting feature that
it failed to inhibit Oct-1 binding to DNA when there is a simple
TAATGARAT motif and an overlapping octamer TAATGRAT motif
[Roberts et al., 1991]. Additionally, it has also been reported that
regulation of transcription factors mostly takes place by CK-II
mediated phosphorylation [Meisner and Czech, 1991]. It has been
documented that phosphorylation of Oct-1 results in its failure to
bind with DNA during G2 and M-phases [Hwang and Chae, 1989;
Schild-Poulter et al., 2003] of the cell cycle.

De-phosphorylation on -OH function of Ser/Thr provides the
chances for other modifications like O-GlcNAc modification. It has
been observed that alternation of O-GlcNAc modification with

phosphorylation can occur on the same or neighboring Ser/Thr
residues (known as Yin Yang sites) [Comer and Hart, 2000]. This
interplay between two modifications on the same or neighboring
residues is expected to modulate the specific function(s) of Oct-1
protein either by enhancing or inhibiting its function.

To investigate this competition of glycosylation and phosphory-
lation, a total of 81 Ser/Thr positive potential 0-GlcNAc modifica-
tion sites including 49 Ser and 32 Thr were predicted in different
domains of Oct-1 using YinOYang 1.2 (Table I; Fig. 2). Some of these
Ser/Thr residues were found conserved in vertebrates (Fig. 3) while
others in invertebrates (Fig. 4). The C-terminal part showed a heavy
potential for O-GIcNAc modification on various Ser and Thr
residues. Amongst the potential phosphorylation and glycosylation
sites in Oct-1 37 Ser/Thr sites were also predicted by YinOYang 1.2
to have potential for both phosphorylation and glycosylation (Yin
Yang sites) (Fig. 2). From these 37 probable sites for Yin Yang
interplay, five sites including Ser 409, 444, 473, and Thr 252, 271
were screened as highly probable sites to act as possible Yin Yang
sites on the bases their complete conservation in vertebrate members
and semi conservation in invertebrate members (Table I). Addition-
ally, Ser 361, 365 are also the moderately probable Yin Yang sites in
the linker region of POUs and POUh sub-domains. Whereas Thr 252
and 271 in N-terminal region and Ser 409 is in POUh domain and
other Ser 444 and 473 in the proximal C-terminal domain one of the
most probable Yin Yang site. As it has been proposed earlier that
differential set of PTMs in DNA binding domain of Oct-2 play vital
role in its binding to different DNA octamer motifs, whereas
interplay of phosphorylation and O-GlcNAc modification in
proximal C-terminal residues can regulate the activation of Oct-2
in mouse and human [Ahmad et al., 2004, 2006]. All the sites
described above are fully conserved in mammalian and vertebrate
members (Fig. 3), whereas, some of them are also conserved even in
invertebrate members (Fig. 4).

Additionally, structural model of mouse POU domain was
generated by homology modeling utilizing SwissModel [Kiefer
et al., 2009] taking human Oct-1 structure lcqt as template. The
model showed that the amino acids Ser 358, 361, 365, and 409 in
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TABLE 1. Modification Potential of Different Ser/Thr Residues for Phosphorylation, O-GlcnAc Modification and Yin Yang Sites With Their

Conservation Level

Conservation Modification potential Conservation Modification potential
Amino Net YinOyang Yin Net YinOyang Yin
acid Inver. Vert. phos 2.0 1.2 yang site  Amino acid Inver. Vert. Phos 2.0 1.2 yang site

Thr7 NC SC + + Pr Thr264 C SC - ++ —
Ser10 NC NC + + - Ser268 SC SC — + -
Ser11 NC SC + - - Ser270 SC CS - + —
Ser14 NC SC + - - Thr271 SC C + + HPr
Ser18 NC NC + - — Thr277 NC SC + - -
Ser74 NC SC + + Pr Ser279 SC SC + - -
Ser75 NC NC + - - Ser284 SC C + - -
Ser78 SC SC + — — Thr326 C SC + - -
Ser81 SC SC + + Pr Ser328 SC SC + - -
Ser84 NC NC — +++ — Ser336 C CS + - -
Ser85 NC SC + +++ Pr Ser358 NC CS + ++ LPr
Ser89 NC SC + +++ Pr Ser359 CsS C — + -
Ser93 NC SC + + Pr Ser361 NC SC + + Pr
Ser142 NC cs + + Pr Ser365 SC SC + + Pr
Ser144 NC SC - + - Ser367 NC C + - -
Ser148 NC SC — + — Thr387 C C + - -
Thr153 C SC — + — Ser388 C C + — —
Thr163 CS C — ++ - Ser409 SC C + + HPr
Ser168 SC C + - - Ser444 SC C + +++ HPr
Thr200 NC SC — + — Ser445 NC SC + +++ Pr
Ser233 NC C - ++ - Ser449 CS CS + - -
Ser243 NC C — ++ — Ser451 NC CS + - -
Ser248 NC CS — + — Ser462 NC SC + + —
Thr251 NC CS — + — Thr467 NC CS + +++ LPr
Thr252 SC C + ++ HPr Ser469 NC C - ++ -
Thr254 SC C — + — Thr472 NC CS — ++ -
Ser473 SC C + + H Thr574 NC NC — ++ —
Thr488 NC C - + - Thr576 NC CS + ++ L
Ser489 NC C — + — Thr577 NC SC + ++ P
Ser496 NC S + - - Ser578 NC CS — + -
Ser507 NC N + — — Thr579 NC NC + ++ -
Thr519 NC N — + — Ser583 NC CS + - -
Thr520 NC N + + - Thr593 NC CS - +

Thr521 NC N - + - Thr594 NC SC + - -
Thr524 NC C + — — Ser626 NC SC — + -
Thr525 NC C — + — Ser671 NC C + — —
Ser527 NC N — + — Ser672 NC SC — ++ —
Thr528 NC N — + — Thr699 NC NC — + -
Ser529 NC N + — — Ser714 NC CS — + -
Ser538 NC C - + - Ser718 NC NC + + -
Thr539 NC N — + — Ser726 NC CS + ++ L
Ser544 NC C + + P Thr727 NC NC - ++ —
Ser545 NC C — + — Thr733 NC NC — ++ -
Thr548 NC C — + — Ser735 NC SC — + -
Ser549 NC C + + P Ser739 NC CS + — -
Ser551 NC C + + P Ser740 NC NC + - —
Ser553 NC C + + L Thr741 NC NC + ++ —
Ser555 NC C + + P Ser742 NC CS + ++ L
Ser557 NC N + + - Ser745 NC C + - -
Ser559 NC N + + - Ser755 NC NC — + -
Ser561 NC N + - - Ser757 NC CS + + L
Thr562 NC N - + - Ser761 NC SC + + P
Ser563 NC C + + L Thr762 NS CS — + —
Ser566 NC C + — — Thr763 NC NC — ++ -
Ser567 NC S + — — Thr764 NC C — ++ -
Ser569 NC S + - - Ser767 NC C . ++

C, conserved; NC, non-conserved; CS, conserved substitution; SC, semi-conserved; Pr, probable as Yin Yang site; HPr, highly probable as Yin Yang site; LPr, lower probale;
-+, positive prediction; +-, highly positive prediction; +++, very highly positive prediction; -, negative.

POU domain of mouse Oct-1 are in the structural positions, which
can affect their binding with DNA octamer motif (Fig. 5) differently
with different PTMs. Amongst these four sites the three sites
including Ser 358, 361, and 365 are located in the linker region of
two POUh and POUs sub-domains, since the linker region of these
sub-domains is involved in producing flexibility resulting in
differential binding patterns of the two sub-domains leading to a

capability of Oct-1 to bind on promoters and enhancers of different
genes. A phosphate group being small and bearing negative charge
is expected to produce different structural and/or conformational
changes compared to GIcNAc, a bulky and multiple -OH group
containing molecule. A differential combination of phosphorylation
and OGlcNAc modification of these three sites (Ser 358, 361, and
365) in developing flexibility by different is quite probable (Fig. 5).
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YmmOYang 1.2: Predicted O-B-GlcNAc sites in Mouse
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Graphic presentation of potential for O-GlcNAc modification on Ser and Thr (vertical green lines) predicted by YinOYang 1.2 in Mouse Oct-1 protein. The Yin Yang sites

(Ser[Thr bearing potential both for phosphorylation and O-GlcNAc modification) are represented by an asterisk on the top of vertical lines. The threshold level is represented by

horizontal variable blue line.

Similarly, phosphorylated/0-GlcNAc modified Ser 409 located in
distal part of POUh sub-domain can also produce the structural/
conformational changes that can favor/disfavor Oct-1 binding with
DNA. Consequently, these possible Yin Yang sites provide the basis
for experimental investigations for their role in Oct-1 binding and
activation. On the basis of the findings that phosphorylation and de-
phosphorylation is a common mechanism in regulating the
functions of different transcription factors [Boulikas, 1995], and
phosphorylated Oct-1 results in repression of binding of Oct-1 with
DNA [Roberts et al., 1991], it can be logical to propose that de-
phosphorylation of Oct-1 facilitates its binding to DNA and ultimate
gene expression (Fig. 6). We propose the occupation of the de-
phosphorylated sites with O-GlcNAc resulting in facilitation of
binding of Oct-1 with DNA. Moreover, phosphorylation of Oct-1
results in its failure to bind with DNA during G2 and M-phases
[Hwang and Chae, 1989; Schild-Poulter et al., 2003] of the cell
cycle (Fig. 6). Therefore, we propose a mechanism for H2B gene
transcription that during G1 and S-phase the OGlcNAc modification
on dephosphorylated amino acids may result in activation of the
transcription machinery (Fig. 6). We also suggest that during G1 and
S phases the Oct-1 may be modified by GlcNAc on one or more
dephosphorylated Ser/Thr, in DNA binding domain, acting as Yin
Yang sites. Thus, three potential Yin Yang sites, including Ser 361,
365 and 409, in DNA binding domain, two Yin Yang sites, Thr 252
and 271, in N-terminal region and three Yin Yang sites, Ser 444, 445,
and 473, in proximal C-terminal domain can serve as the interplay
sites for phosphorylation and O-GlcNAc modification for H2B gene
regulation. When the transcription process is terminated, an enzyme
OGlcNAcase (OGN) removes the O-GlcNAc and these Ser/Thr
residues in DNA binding domain, are available for kinase action to
phosphorylate them (Fig. 6). Phosphorylation of Oct-1 in its DNA
binding domain results in its removal from DNA [Hwang and Chae,
1989; Schild-Poulter et al., 2003] and the cell enters in G2 phase
spanning the M-phase (Fig. 5), consequently, inhibition of
transcription process of H2B gene during G2 and M phases of the
cell cycle may result (Fig. 5).

Similarly, the competition of methylation with acetylation on same
or adjacent Lys can be as promising as that for phosphorylation and
0-GlcNAc modification. Prediction of acetylation by PAIL [Li et al.,
2006] have shown 15 residues with a higher potential for acetylation
including the Lys 9, 273, 297, 302, 316, 338, 342, 344, 384, 385, 399,
436, 438, 454, and 768. While prediction of methylation on Lys
residues by MeMo [Chen et al., 2006] resulted in only two
potential sites including Lys 73 and 385. Only Lys 385 located in
POU domain, also conserved completely in all vertebrates (Fig. 3)
and invertebrates (Fig. 4), has been predicted to be potential switch
site for methylation and acetylation. Acetylation of basal
transcription factors on Lys has been documented to regulate the
activity of transcription factors [Imhof et al., 1997]. Additionally,
YY1, a sequence-specific DNA binding transcription factor, is also
differentially regulated by reversible phosphorylation and acetyla-
tion in its different domains involving both activation and
repression of different genes during development and differentia-
tion processes [Yao et al., 2001]. Therefore, acetylation of murine
Oct-1 Lys 385 located in POUh subdomain can result in providing
further strength for repressing the binding of Oct-1 with DNA
octamer motif with a mechanism similar to phosphorylation as both
bearing negative charges on them (Fig. 6). Similar to phosphoryla-
tion, reversible acetylation and deacetylation also act as a
mechanism of protein regulations. Methlayion of deacetylated
Lys 385 can result in inhibition of acetylation mediated binding
repression of Oct-1 to DNA octamer motif (Fig. 6).

Moreover, Lys methylation and Ser/Thr phosphorylation switch on
vicinal amino acids can also result in some diverse regulations of
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Fig. 3. ClustalW [Thompson et al., 1994] results show the alignment of Oct-1 protein of Mus musculus (P25425) retrieved from the Swiss-Prot database [Boeckmann et al.,
2003] with eight orthologues from different vertebrates including Homo sapiens (GenBank AAM77920.1), Sus scrofa (Swiss-Prot Q29076.1), Rattus norvegicus (Swiss-Prot
P31503) Gallus gallus (Ref Seq NM_205472.1), Xenopus tropicalis (EMBL CR942771.2), Danio rerio (Ref Seq NP_001082798), and Ictalurus punctatus (EMBL CAA03984.1)
selected by BLAST search [Altschul et al., 1997]. Conservation status of amino acids in different vertebrates is shown by asterisk for conservation in all members, double dot
represent conserved substitution, whereas single dot represents semi conserved amino acid residue.

Oct-1. The possible methylation and phosphorylation switch sites in
Oct-1 can be Lys 73 with Ser 74 and Lys 385 with Ser 387 and 388.
Methylation of these Lys 74 and 385 can result in reduced or In essence, we suggest that different PTMs and their interplay can
complete absence of phosphorylation of the vicinal Ser residues regulate gene expression by controlling the transcriptional
(including Ser 74 and Ser 387 and 388). activation and repression in different phases of the cell cycle.
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Fig. 4. A multiple alignment of mouse Oct-1 with two invertebrate orthologs selected by BLAST search utilizing ClustalW. Conservation level of amino acids in the two
invertebrates [Drosophilla melanogaster (P31368) and Caenorhabditis elegans (Ensembl K02B12.1)] is shown by asterisk for conservation in all members, double dot represent
conserved substitution, whereas single dot represents semi-conserved amino acid residue.

Switching of one PTM with the other, in general, and interplay
of phosphorylation and 0-GlcNAc modification on -OH function of
Ser/Thr, in particular, is quite probable in different domains
of murine Oct-1 and can be investigated experimentally as a
possible mechanism for modulation of H2B and other genes
regulation. Here, we suggest an involvement of acetylation for

producing similar affects as those of phosphorylation and those of
methylation similar to those of O-GIcNAc modification (Fig. 6).
The PTMs switching with each other can act as a functional
switch of proteins resulting to produce an ability in proteins to
perform multifunctions. This can serve as a general mechanism
to regulate gene transcription initiation and inhibition in

Fig. 5.

Homology model of POU domain of mouse Oct-1 showing the four sites (Ser358, 361, 365, and 409) in stick style with CPK color scheme. Three of them (Ser 358, 361,

and 365), in the linker region of POUs and, POUh are in a position that can affect the flexibility of linker region by differential combinations of different PTMs resulting in diverse
gene regulations by Oct-1. The fourth amino acid, Ser 409, is located in distal part of POUh sub-domain and different PTMs can also result in structural/conformational changes

leading to diverse gene regulations.
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A scheme of the proposed mechanism for activation and inhibition of DNA-Oct-1 complex formation regulated by alternative and cell cycle phase specific

phosphoyrlation, acetylation with 0-GlcNAc modification and methylation, respectively. During G2 and M phase phosphorylation and acetylation of Oct-1 in its DNA binding
domain result in inhibition of DNA-Oct-1 complex formation, whereas in G1 and S phases of the cell cycle, the O-GlcNAc modification and methylation result in activation of

DNA-Oct-1 complex formation.

different phases of the cell cycle for different transcription factors
including Oct-1.

Specifically, interplay of phosphorylation and O-GIcNAc modi-
fication on Ser 358, 361 and 365 in linker region of POUs and POUh
sub-domains can result in changing its flexibility resulting in
binding of Oct-1 to different genes promoters and enhancers.
Similarly, Ser 409 in POUh domain can also play a same role through
interplay of phosphorylation and O-GIcNAc modification by
inducing structural/conformational changes resulting in differential
binding of POUh sub-domain to different gene promoters and/or
enhancers.
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